Real theta-characteristics on real projective curves
نویسنده
چکیده
Here we prove the existence of non-locally free real theta-characteristics on any real reduced projective curve.
منابع مشابه
Real Theta Characteristics and Automorphisms of a Real Curve
Let X be a geometrically irreducible smooth projective curve, defined over R, of genus at least two that admits nontrivial automorphisms. Fix a nontrivial automorphism σ of X. Assume that X does not have any real points. Then σ acts trivially on the set of all real theta characteristics of X if and only if X is hyperelliptic with σ being the unique hyperelliptic involution of X. Examples are gi...
متن کاملSymmetric Plane Curves of Degree 7 : Pseudoholomorphic and Algebraic Classifications
This paper is motivated by the real symplectic isotopy problem : does there exist a nonsingular real pseudoholomorphic curve not isotopic in the projective plane to any real algebraic curve of the same degree? Here, we focus our study on symmetric real curves on the projective plane. We give a classification of real schemes (resp. complex schemes) realizable by symmetric real curves of degree 7...
متن کاملPseudo-holomorphic and Algebraic Classifications
Almost all known restrictions on the topology of nonsingular real algebraic curves in the projective plane are also valid for a wider class of objects: real pseudo-holomorphic curves. It is still unknown if there exists a nonsingular real pseudo-holomorphic curve not isotopic in the projective plane to a real algebraic curve of the same degree. In this article, we focus our study on symmetric r...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملN ov 2 00 2 OPERS AND THETA FUNCTIONS
We construct natural maps (the Klein and Wirtinger maps) from moduli spaces of vector bundles on an algebraic curve X to affine spaces, as quotients of the nonabelian theta linear series. We prove a finiteness result for these maps over generalized Kummer varieties (moduli of torus bundles), leading us to conjecture that the maps are finite in general. The conjecture provides canonical explicit...
متن کامل